Saturday, November 5, 2016

Exponentiell gewichteter gleitender durchschnitt in r

7.3.7 Exponentiell gewichteter gleitender Durchschnitt (EWMA) 7.3.7 Exponentiell gewichteter gleitender Durchschnitt Um die Annahmen einer einheitlich gewichteten gleitenden durchschnittlichen Schätzung (UWMA) mit den Realitäten der Markt-Heteroskedastizität in Einklang zu bringen, könnten wir den Schätzer 7.10 nur auf die jüngsten historischen Daten tq anwenden . Die den gegenwärtigen Marktbedingungen am ehesten entsprechen sollten. so zu tun, ist selbstzerstörerisch, als Schätzer 7,10 zu einer kleinen Menge von Daten der Anwendung wird ihre Standardfehler erhöhen. Folglich bringt UWMA einem Dilemma: es ist eine Menge von Daten die Anwendung schlecht ist, aber so ist es zu einer kleinen Daten. Dies motivierte Zangari (1994) eine Modifikation UWMA vorzuschlagen genannt gleitender Durchschnitt (EWMA) estimation.2 exponentiell gewichteten Dies gilt eine ungleichmäßige Gewichtung Zeitreihendaten, so dass eine Menge von Daten verwendet werden können, aber die jüngsten Daten mehr gewichtet stark . Wie der Name schon sagt, basieren Gewichte auf der Exponentialfunktion. Exponentiell gewichteten gleitenden Durchschnitt Schätzung ersetzt Schätzer 7.10 mit dem Dämpfungsfaktor im Allgemeinen einen Wert zwischen 0,95 und 0,99 zugeordnet ist. Niedrigere Zerfallsfaktoren neigen dazu, jüngere Daten stärker zu gewichten. Beachten Sie, dass exponentiell gewichteten gleitenden Durchschnitt Schätzung ist weit verbreitet, aber es ist eine bescheidene Verbesserung gegenüber UWMA. Es versucht nicht, marktbedingte Heteroskedastizität mehr als UWMA zu modellieren. Die Gewichtungsschema ersetzt das Dilemma, wie viele Daten mit einem ähnlichen Dilemma zu verwenden, wie aggressiv ein Zerfallsfaktor zu verwenden. Betrachten wir wieder Ausstellung 7.6 und unser Beispiel der USD 10MM Position ist SGD. Lets Schätzung 10 1 mit exponentiell gewichteten gleitenden Durchschnitt Schätzer 7,20. Wenn wir .99 verwenden, erhalten wir eine Schätzung für 10 1 von .0054. Wenn wir .95 verwenden, erhalten wir eine Schätzung von .0067. Diese entsprechen der Position Value-at-Risk-Ergebnisse von USD 89.000 bzw. USD 110.000. Übungen 7.7 zeigt 30 Tage Daten für einen einmonatigen CHF Libor an. 7.7: Daten für 1-Monats-CHF-Libor. Die Preise sind in Prozent angegeben. Quelle: British Bankers Association (BBA).Erfahren der exponentiell gewichteten Moving Average Volatility ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor (speziell eine 1 / m) ist, dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht entspricht (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1/509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) EWMA Kovarianz-Modell Definition Betrachten n Zeitreihen der Rückkehr und machen die übliche Annahme, dass die Rückkehr sind seriell nicht korreliert. Dann können wir einen Vektor von Null-Mittelwert-Weißgeräuschen 949 t rt - 956 definieren. Dabei ist r t der n x2a2f 1 Vektor der Rückkehr und 956 der Vektor der erwarteten Renditen. Trotz der seriellen Unkorrelation können die Rückgaben eine zeitgleiche Korrelation darstellen. Das heißt: x2211 t x2254 120124 t - 1 r t - 956 r t - 956 darf keine Diagonalmatrix sein. Darüber hinaus kann diese zeitliche Abweichung zeitabhängig sein, abhängig von vergangenen Informationen. Das exponentiell gewichtete Moving Average (EWMA) - Kovarianzmodell nimmt für diese bedingte Kovarianz eine spezifische parametrische Form an. Im Einzelnen sagen wir, dass r - 956 x 2211 t 1 1 - x3bb r t - 956 r t - 956 x3bb x2211 t V - Lab nutzt x3bb 0.94. Der von RiskMetrics für die tägliche Rendite vorgeschlagene Parameter und 956 der Durchschnittswert der Renditen. Korrelationen Beachten Sie, dass die Elemente aus der Hauptdiagonale von x2211 t bedingte Varianzen der Renditen ergeben, d. H. X 2211 t i. I die bedingte Varianz der Rückkehr r t i ist. In analoger Weise liefern die Elemente außerhalb der Hauptdiagonale bedingte Kovarianzen, d. h. x 2211 t i. J ist die bedingte Kovarianz zwischen den Rückgängen r t i und r t j. Folglich können wir leicht die bedingten Korrelationen x393 ti zurückführen. J x2254 x2211 t i. J x2211 t i. I x 2211 t j. J Dies wird von V-Lab dargestellt. Genauer gesagt können wir die gesamte Korrelationsmatrix folgendermaßen definieren: x393 t x2254 Dt - 1 x2211 tDt - 1, wobei Dt eine Matrix ist, so dass x2200i. J x2208 1. n: D t i. J x2254 x3b4 i. J x2211 t i. J mit x3b4 i. J ist das Kronecker-Delta, d. H. X3b4i. J 1, wenn i j und x3b4 i. J 0 ansonsten. Das heißt, D t ist eine Matrix, bei der alle Elemente außerhalb der Hauptdiagonalen auf Null gesetzt sind und die Hauptdiagonale auf die bedingten Volatilitäten eingestellt sind, dh die Elemente in der Hauptdiagonale sind gleich der Quadratwurzel der Elemente im Hauptteil Diagonale von x2211 t. Dann wird x393 ti. J ist wiederum die Korrelation zwischen r t i und r t j. Beachten Sie, dass x393 t i. J 1. x2200 i x2208 1. n. Verhältnis zu den GARCH (1,1) Modell Beachten Sie, dass die EWMA ist eigentlich eine multivariate Version eines IGARCH 1 1-Modell, das einen besonderen Fall des GARCH 1 1 Modell. Beachten Sie auch, dass nach der bedingten Varianz Ausdruck iteriert, so erhalten wir, wenn x3bb x2208 0 1: x2211 t 1 1 - x3bb 949 t 949 t x3bb 1 - x3bb 949 t - 1 949 t - 1 x3bb 2 1 - x3bb 949 t - 2 949 t - 2. 1 - x3bb 949 t 949 t x3bb 949 t - 1 949 t - 1 x3bb 2 949 t - 2 949 t - 2. 949 t 949 t x3bb 949 t - 1 949 t - 1 x3bb 2 949 t - 2 949 t - 2. 1 1 - x3bb 949 t 949 t x3bb 949 t - 1 949 t - 1 x3bb 2 949 t - 2 949 t - 2. 1 x3bb x3bb 2. Das ist ein gewichteter Durchschnitt, mit Gewichten abklingende exponentiell mit der Rate x3bb. Daher der Name des Modells, Exponential Weighted Moving Average. Bibliographie Engle, R. F. 2009. Im Vorgriff auf Korrelationen: Ein neues Paradigma für das Risikomanagement. Princeton University Press. Tsay, R. S. 2005. Analyse der finanziellen Zeitreihen mdash 2nd Ed. Wiley-Interscience. Teilen Sie Ihre Erkenntnisse: Informationen zur Verfügung gestellt wird, wie er ist und ausschließlich zu Informationszwecken, nicht zu Handelszwecken oder Beratung. Zusätzliche BestimmungenMoving-Durchschnitt und exponentielle Glättungsmodelle Als erster Schritt bei der Überwindung von Mittelwertsmodellen, zufälligen Wandermodellen und linearen Trendmodellen können nicht-saisonale Muster und Trends mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird in der Periode t (m1) / 2 zentriert, was bedeutet, daß die Schätzung des lokalen Mittels dazu neigt, hinter dem Wert zu liegen Wahren Wert des lokalen Mittels um etwa (m1) / 2 Perioden. Das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt ist also (m1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten in der Region zu liegen Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Wandermodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. Es sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1/945 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1/945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-Term-Simple Moving ist durchschnittlich. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird nur ein ARIMA-Modell mit einer Nicht-Seasonal-Differenz und einem MA (1) - Term mit einer Konstanten, d. h. einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel in Ordnung ist oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Durchschnittsalter der Daten, die für die Schätzung der lokalen Ebene der Serie verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1/946, wenn auch nicht exakt gleich es. In diesem Fall ergibt sich 1 / 0,006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 , So dass dieses Modell ist im Durchschnitt über eine ganze Menge Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Nach oben) EWMA-Vorlage Was ist ein EWMA-Diagramm (Exponential-Weighted Moving-Average) . Die Chart-Plots Gleitmittelwerte gewichtet wird ein Gewichtungsfaktor durch den Benutzer ausgewählt, um zu bestimmen, wie ältere Datenpunkte den Mittelwert beeinflussen im Vergleich zu neueren. Da die EWMA-Diagramm Informationen aus allen Proben verwendet, es erkennt, viel kleinere Prozessverschiebungen als eine normale Regelkarte würde. Wie bei anderen Steuerkarten werden EWMA-Diagramme verwendet, um Prozesse über die Zeit zu überwachen. Warum verwenden Sie: Wendet die Gewichtungsfaktoren an, die exponentiell abnehmen. Die Gewichtung für jeden älteren Datenpunkt nimmt exponentiell ab, was den jüngsten Beobachtungen viel mehr Bedeutung verleiht, während ältere Beobachtungen nicht vollständig vernachlässigt werden. Der Grad der Wiegeabnahme wird als konstanter Glättungsfaktor ausgedrückt, wobei eine Zahl zwischen 0 und 1 als Prozent ausgedrückt werden kann, so dass ein Glättungsfaktor von 10 gleich 0,1 ist. Alternativ kann in Form von N Zeitperioden ausgedrückt werden. Beispielsweise ist N19 äquivalent zu 0,1. Die Beobachtung zu einem Zeitpunkt t ist mit Yt bezeichnet und der Wert der EMA zu irgendeinem Zeitpunkt t ist mit S1 bezeichnet und ist nicht definiert. S2 kann auf verschiedene Weise initialisiert werden, am häufigsten durch Einstellen von S2 auf Y1, obwohl es andere Techniken gibt, wie etwa das Setzen von S2 auf einen Durchschnitt der ersten 4 oder 5 Beobachtungen. Die Prominenz der S2-Initialisierungswirkung auf den resultierenden gleitenden Durchschnitt hängt von kleineren Werten ab, was die Wahl von S2 relativ wichtiger macht als größere Werte, da eine höhere Diskontierung älterer Beobachtungen schneller erfolgt. Der Vorteil von EWMA-Diagrammen besteht darin, dass jeder aufgezeichnete Punkt mehrere Beobachtungen enthält, sodass Sie mit dem zentralen Grenzwertsatz sagen können, dass der Mittelwert der Punkte (oder der gleitende Durchschnitt in diesem Fall) normal verteilt ist und die Kontrollgrenzen klar definiert sind. Einsatzmöglichkeiten: Die Diagramme x-Achsen sind zeitbasiert, so dass die Diagramme eine Historie des Prozesses zeigen. Aus diesem Grund müssen Sie Daten haben, die zeitgesteuert sind, die in der Reihenfolge eingegeben werden, aus der sie generiert wurden. Wenn dies nicht der Fall ist, können Trends oder Verschiebungen des Prozesses nicht erkannt werden, sondern stattdessen einer zufälligen (häufigen) Variation zugeschrieben werden. Verwendung: EWMA (oder exponentiell gewichteter gleitender Durchschnitt) Diagramme werden im Allgemeinen verwendet, um kleine Verschiebungen im Prozessmittel zu erkennen. Sie erkennen Verschiebungen von 0,5 Sigma auf 2 Sigma viel schneller als Shewhart-Diagramme mit der gleichen Stichprobengröße. Sie sind jedoch langsamer bei der Erfassung großer Verschiebungen im Prozessmittel. Darüber hinaus können aufgrund der inhärenten Abhängigkeit von Datenpunkten keine typischen Ausführungstests verwendet werden. EWMA-Charts können auch bevorzugt werden, wenn die Untergruppen die Größe n1 haben. In diesem Fall kann ein alternatives Diagramm das individuelle X-Diagramm sein. In diesem Fall müssten Sie die Verteilung des Prozesses abschätzen, um seine erwarteten Grenzen mit Kontrollgrenzen zu definieren. Bei der Wahl des Wertes von Lambda, der für die Gewichtung verwendet wird, wird empfohlen, kleine Werte (wie 0,2) zum Erfassen kleiner Verschiebungen und grßere Werte (zwischen 0,2 und 0,4) für größere Verschiebungen zu verwenden. Ein EWMA-Diagramm mit lambda 1.0 ist ein X-Balkendiagramm. EWMA-Diagramme werden auch verwendet, um den Einfluss von bekannten, unkontrollierbaren Rauschen in den Daten zu glätten. Viele Abrechnungsprozesse und chemische Prozesse passen in diese Kategorisierung. Zum Beispiel, während Tag zu Tag Schwankungen in der Rechnungslegung Prozesse groß sein können, sind sie nicht nur ein Indiz für Prozess Instabilität. Die Wahl von Lambda kann bestimmt werden, um das Diagramm mehr oder weniger empfindlich für diese täglichen Schwankungen zu machen. So verwenden Sie es: Interpretieren eines EWMA-Diagramms Standardfall (Nicht wandernder Mittelwert) Schauen Sie immer zuerst auf Range-Diagramm. Die Regelgrenzen des EWMA-Diagramms ergeben sich aus dem mittleren Bereich (oder dem Verschiebungsbereich bei n1). Wenn also das Range-Diagramm außer Kontrolle ist, dann sind die Regelgrenzen des EWMA-Diagramms bedeutungslos Von Kontrollpunkten. Wenn es irgendwelche gibt, dann müssen die besonderen Ursachen eliminiert werden. Denken Sie daran, dass der Range die Schätzung der Variation innerhalb einer Untergruppe ist, also suchen Sie nach Prozesselementen, die die Variation zwischen den Daten in einer Untergruppe erhöhen würden. Nach der Überprüfung des Range-Diagramms die Punkte auf dem EWMA-Diagramm relativ zu den Kontrollgrenzen interpretieren. Run-Tests werden nie auf ein EWMA-Diagramm angewendet, da die aufgezeichneten Punkte inhärent abhängig sind und gemeinsame Punkte enthalten. Betrachten Sie die Punkte des EWMA-Diagramms im Vergleich zu den Spezifikationen niemals, da die Beobachtungen des Prozesses viel stärker variieren als die exponentiell gewichteten Bewegungsdurchschnitte. Wenn das Verfahren eine Kontrolle relativ zu den statistischen Grenzen für einen ausreichenden Zeitraum (lang genug, um alle möglichen besonderen Ursachen zu sehen), dann können wir analysieren, seine Fähigkeit in Bezug auf Anforderungen. Die Fähigkeit ist nur dann sinnvoll, wenn der Prozess stabil ist, da wir das Ergebnis eines instabilen Prozesses nicht vorhersagen können. Wandern Mean Chart Suchen Sie aus der Kontrolle Punkte. Diese stellen eine Verschiebung des erwarteten Verlaufs des Prozesses gegenüber seinem vergangenen Verhalten dar. Das Diagramm ist nicht sehr empfindlich auf subtile Änderungen in einem Driftverfahren, da es ein gewisses Maß an Drift als die Art des Prozesses akzeptiert. Denken Sie daran, dass die Kontrollgrenzen auf einem exponentiell geglätteten Vorhersagefehler für vergangene Beobachtungen basieren. Je größer die vorherigen Drifts sind, desto unempfindlicher wird das Diagramm sein, um Änderungen in der Driftmenge zu detektieren.


No comments:

Post a Comment